Functions

Recall **A function** f is a <u>rule</u> which assigns to each element x of a set D, exactly one element, f(x), of a set E.

- A function can be viewed as a machine like object which acts on a variable to transform it.
- For example, the function f(x) = 2x + 1, transforms the number x by multiplying it by 2 and adding 1.
- We can gain a lot of information about the behavior of a function by using algebra and by calculating derivatives if they exist.
- ▶ We can also gain a lot of information about a function by sketching its graph either using the basic graphing techniques from precalculus or the more sophisticated ones from Calculus 1.
 - The graph of every function passes the vertical line test i.e. when we graph the equation y = f(x) every vertical line cuts the graph at most once.
 - In fact if the graph of an equation passes this test, the graph is the graph of some function and we can (theoretically) solve for y in terms of x.

One-To One Functions

One-to-one Functions A function f is 1-to-1 if it never takes the same value twice or for every pair of numbers x_1 and x_2 in the domain of f;

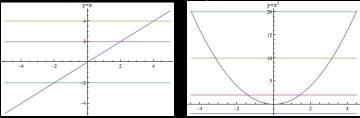
 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

- **Example** The function f(x) = x is one to one,
- because if $x_1 \neq x_2$, then $(x_1 =)f(x_1) \neq f(x_2)(=x_2)$.
- On the other hand the function g(x) = x² is not a one-to-one function, because g(−1) = g(1).
 - Note that to prove that a function is not one-to-one, it is enough to find just one pair of numbers x₁ and x₂ with x₁ ≠ x₂ for which f(x₁) = f(x₂) whereas to prove that a function is one to one, we must show that f(x₁) ≠ f(x₂) for every such pair.

Graph of a one-to-one function

If f is a one to one function then no two points (x_1, y_1) , (x_2, y_2) have the same y-value. This is equivalent to the geometric condition that no horizontal line cuts the graph of the equation y = f(x) more than once.

Example We can draw the same conclusions about the functions we looked at in the previous slides from the graphs:

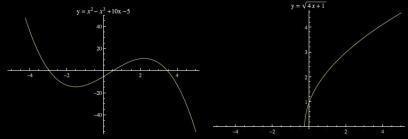


Note that the lines y = 2, y = 10 and y = 20 all cut the graph of y = x² twice, showing that it is not a 1-to-1 function.

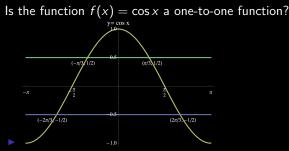
Determining if a function is one-to-one geometrically

Horizontal Line test (HLT) : A graph passes the Horizontal line test if each horizontal line cuts the graph at most once.

- A function f is one-to-one if and only if the graph y = f(x) passes the Horizontal Line Test (HLT).
- Example Which of the following functions are one-to-one?



Example: Cosine

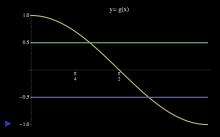


► We see that there are several horizontal lines that cut the graph more than once. So the cosine function is not one-to-one

Example: Restricted Cosine Function

The following piecewise defined function, is called the restricted cosine function because its domain is restricted to the interval $[0, \pi]$.

We have $Domain(g) = [0, \pi]$ and Range(g) = [-1, 1].



Is g(x) a one-to-one function?

The answer is yes, because each horizontal line cuts the graph at most once.