Functions

Recall A function f is a rule which assigns to each element x of a set D, exactly one element, $f(x)$, of a set E.

- A function can be viewed as a machine like object which acts on a variable to transform it.
- For example, the function $f(x)=2 x+1$, transforms the number x by multiplying it by 2 and adding 1 .
- We can gain a lot of information about the behavior of a function by using algebra and by calculating derivatives if they exist.
- We can also gain a lot of information about a function by sketching its graph either using the basic graphing techniques from precalculus or the more sophisticated ones from Calculus 1.
- The graph of every function passes the vertical line test i.e. when we graph the equation $y=f(x)$ every vertical line cuts the graph at most once.
- In fact if the graph of an equation passes this test, the graph is the graph of some function and we can (theoretically) solve for y in terms of x.

One-To One Functions

One-to-one Functions A function f is 1 -to- 1 if it never takes the same value twice or for every pair of numbers x_{1} and x_{2} in the domain of f;

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \text { whenever } x_{1} \neq x_{2} .
$$

- Example The function $f(x)=x$ is one to one,
∇ because if $x_{1} \neq x_{2}$, then $\left(x_{1}=\right) f\left(x_{1}\right) \neq f\left(x_{2}\right)\left(=x_{2}\right)$.

$$
g(x)=x^{2} \text { is not a one-to-one }
$$

function, because $g(-1)=g(1)$.

- Note that to prove that a function is not one-to-one, it is enough to find just one pair of numbers x_{1} and x_{2} with $x_{1} \neq x_{2}$ for which $f\left(x_{1}\right)=f\left(x_{2}\right)$ whereas to prove that a function is one to one, we must show that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ for every such pair.

Graph of a one-to-one function

If f is a one to one function then no two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ have the same y-value. This is equivalent to the geometric condition that no horizontal line cuts the graph of the equation $y=f(x)$ more than once.
$>$ Example We can draw the same conclusions about the functions we looked at in the previous slides from the graphs:

$>$ Note that the lines $y=2, y=10$ and $y=20$ all cut the graph of $y=x^{2}$ twice, showing that it is not a 1-to-1 function.

Determining if a function is one-to-one geometrically

Horizontal Line test (HLT) : A graph passes the Horizontal line test if each horizontal line cuts the graph at most once.

- A function f is one-to-one if and only if the graph $y=f(x)$ passes the Horizontal Line Test (HLT).
- Example Which of the following functions are one-to-one?

Example: Cosine

Is the function $f(x)=\cos x$ a one-to-one function?

- We see that there are several horizontal lines that cut the graph more than once, So the cosine function is not one-to-one

Example: Restricted Cosine Function

The following piecewise defined function, is called the restricted cosine function because its domain is restricted to the interval $[0, \pi]$.

$$
g(x)=\left\{\begin{array}{cc}
\cos x & 0 \leq x \leq \pi \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

We have Domain $(\mathrm{g})=[0, \pi]$ and Range $(\mathrm{g})=[-1,1]$.

$>$ Is $g(x)$ a one-to-one function?

- The answer is yes, because each horizontal line cuts the graph at most once.

